首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25909篇
  免费   2011篇
  国内免费   1233篇
电工技术   361篇
综合类   1277篇
化学工业   10948篇
金属工艺   4304篇
机械仪表   332篇
建筑科学   751篇
矿业工程   553篇
能源动力   1704篇
轻工业   2770篇
水利工程   143篇
石油天然气   1386篇
武器工业   99篇
无线电   616篇
一般工业技术   2306篇
冶金工业   1219篇
原子能技术   246篇
自动化技术   138篇
  2024年   51篇
  2023年   527篇
  2022年   622篇
  2021年   831篇
  2020年   846篇
  2019年   840篇
  2018年   754篇
  2017年   824篇
  2016年   765篇
  2015年   735篇
  2014年   1163篇
  2013年   1360篇
  2012年   1440篇
  2011年   1811篇
  2010年   1340篇
  2009年   1599篇
  2008年   1384篇
  2007年   1704篇
  2006年   1504篇
  2005年   1310篇
  2004年   1117篇
  2003年   1003篇
  2002年   853篇
  2001年   794篇
  2000年   685篇
  1999年   448篇
  1998年   418篇
  1997年   323篇
  1996年   352篇
  1995年   228篇
  1994年   219篇
  1993年   208篇
  1992年   188篇
  1991年   163篇
  1990年   142篇
  1989年   78篇
  1988年   58篇
  1987年   58篇
  1986年   56篇
  1985年   50篇
  1984年   50篇
  1983年   21篇
  1982年   43篇
  1981年   37篇
  1980年   31篇
  1979年   20篇
  1978年   24篇
  1977年   18篇
  1976年   17篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
31.
(Y1-x%Cex%)3Al5O12 (x = 0.2,0.4,0.6,0.8,1.0) transparent ceramics were fabricated by vacuum sintering technology, followed by air annealing at different temperatures. Transmittance of ceramics, valence of cerium, and luminescent properties with varying annealing temperatures are studied in detail. The negative effect of Ce3+ oxidation induced by annealing gets increasingly evident when Ce concentration increases. Collaborating Ce:YAG ceramics with InGaN blue chips, light-emitting diodes (LEDs) with superior performance were constructed. The relationships between Ce concentration, annealing temperature, and luminous flux of LEDs are elucidated, showing that the optimized annealing temperature of Ce:YAG ceramics decreases from 1200 °C to 900 °C as Ce concentration increases from 0.2 at% to 1.0 at%. The luminous fluxes of optimized LEDs increase by ~10 % compared with that of unannealed LEDs.  相似文献   
32.
根据高碘酸盐活化方式、活化机理和相关自由基种类等方面,叙述了国内外高碘酸盐高级氧化体系降解水体有机污染物方面的工作。基于氧化剂为高碘酸盐的高级氧化技术氧化能力强,能在较宽的pH范围内高效降解包括抗氧化能力极强的全氟辛酸(PFOA)在内的多种有机污染物,在水处理领域具有较好的应用潜力。依据目前的研究现状,结合实际需求,认为进行废水处理的小试或者中试、优化活化理论研究,以及明确各活性物质对有机物选择性降解的机理,是将来需要关注的问题以及研究方向。  相似文献   
33.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
34.
The micro-arc oxidation (MAO) coatings were prepared in four different electrolyte systems, including mixed acid, phosphate, phosphate-aluminate and phosphate-silicate electrolytes. The friction and wear properties of MAO coatings in ambient air, seawater and four groups of saline solutions related to seawater were investigated. The results showed that the addition of silicate to phosphate could increase the density of the coating. The phosphate-aluminate ceramic layer exhibited the lowest wear rate in various environments. Additionally, the friction coefficient and wear rate of MAO coating in seawater were lower than those in ambient air, which was due to the boundary lubrication effect of seawater. Meanwhile, the presence of divalent metal salts in seawater made its lubricity better than other salt solutions.  相似文献   
35.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
36.
Oil, accounting for 45% of almonds, is easily oxidised and can further induce the protein oxidation to reduce their quality. Structure and physicochemical properties of amandin, the main water-soluble protein in almonds, inducing oxidation by malondialdehyde (MDA) were investigated. The results showed that the content of carbonyl group increased from 5.23 to 33.25 nmol mg−1 of protein with the increase in MDA concentration (P < 0.05). However, the sulphydryl content, surface hydrophobicity, particle size and the absolute value of ζ-potential first increased and then decreased. Fourier-transformed infrared spectroscopy (FT-IR) confirmed that the structure of amandin changed from order to disorder. Fluorescence spectroscopic analysis revealed that mild oxidation (0–0.1 mmol L−1 MDA) exposed hydrophobic groups of the protein. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) suggested that protein oxidation promoted crosslinking between protein molecules. Furthermore, protein oxidation markedly declined the total amino acid content of amandin (P < 0.05). In conclusion, MDA oxidation changed the structure and amino acid content of amandin, and caused the protein aggregate and crosslink through hydrophobic interaction and electrostatic interaction.  相似文献   
37.
《Ceramics International》2022,48(4):5229-5238
The uneven growth of thermally grown oxides (TGOs) in thermal barrier coating systems is an important cause of cracking failure at the coating interface in high-temperature environments. The doping of rare earth elements in the bonding layer can effectively inhibit the formation of spinel oxides in the TGO and improve the high-temperature oxidation resistance of the coating. However, a single rare earth element has a limited effect on inhibiting TGO failure. In this study, a NiCoCrAlYHf coating was prepared using a supersonic flame spraying (HVOF) technique. The effects of HfO2 doping on the high-temperature oxidation behaviour of the coatings and diffusion behaviour of metallic elements in the coatings were investigated at 1100 °C. The results showed that the nano-sized HfO2 filled the pores between the powder particles and improved the hardness of the coating. During the high-temperature oxidation process, the oxides formed by Hf and Y had a large size and low solubility, which effectively blocked the diffusion of Al. This slowed the generation of spinel oxides, effectively inhibited the growth of the TGO, it inhibits the initiation and propagation of cracks within the coating, reduces damage to the coating from tensile and compressive stresses at the interface, and improved the high-temperature oxidation resistance of the coating.  相似文献   
38.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
39.
Poor antioxidant and thermal-shock capacities of C/C composites thermal barrier coating (TBC) caused by cracking and shedding of coatings has been a major obstacle blocking the development of C/C composites. Herein, in-situ growth of whisker reinforced silicon carbide transition layer and inter-embedding mechanism of multi-gradient coatings were brought into the design of TBC to enhance the antioxidant and thermal-shock capacities. A three-layer gradient coating SiC-SiCw/ZrB2-SiC/ZrSiO4-aluminosilicate glass (ZAG) from inside to outside, in which ZrB2-SiC/ZAG serve as oxygen barrier layers with self-healing ability and SiC-SiCw provides thermal stress buffering and bonding against cracking and shedding of coatings, is designed. The ZAG mainly forms a dense oxygen blocking frontier with self-healing ability through fluidized glass, while the ZrB2-SiC can react actively with infiltrated oxygen in a way of self-sacrifice, preventing oxygen erosion to C/C matrix and SiC-SiCw transition layer. As a result, the collaborative work among layers endows this coating with excellent high temperature service performance. This work provides a new insight for the design of excellent TBC.  相似文献   
40.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号